0 in _er_ice
0 _ut dam_er on y-0-s in()id u _ood
0 _ife re()urns a_t-er _all
_eep tu()n-ing on _ife un0 _u()vive wit()out wi-fi
y u()g out to e*/i-ence wi_hout in()id _urge _out
u un0 t_ink & li_10 @ same _ime
i.e. _ow y-0-s e@ing in()id u _ime
for in()id u ne_er a_one
& out()id _lone y-0-s _eeking c_one
a _ol y-0-s in()id u _an e@ out
wit_out _oing in()id _out
a weil_age _an i_enti_y y-0-s in()id u _oot c_use of min_full_ess pat_er-n _ie
an ever-y1 p()oblem _as a _olution is _ol pro_lem
a _ol is g()eater than _um of ha_f _arts
y-0-s in()id u _ar 0 on w()ong end of on
& u _ar ri_ in()id out()un
